Un desafío que se plantea a quienes enseñan esta materia es lograr transmitir a los alumnos/as la idea de que la Matemática es un quehacer para todos y no sólo para elegidos. La presentación de situaciones que estén al alcance de todos es un camino para devolver a los alumnos/as la confianza en sus posibilidades de hacer Matemática.
Función Cuadrática. Características
Una función de la forma:
f (x) = a x ² + b x + c |
con a, b y c pertenecientes a los reales y a ¹ 0, es una función cuadrática y su gráfico es una curva llamada parábola.
En la ecuación cuadrática sus términos se llaman:
si la ecuación tiene todos los términos se dice ecuación completa, si a la función le falta el término lineal o independiente se dice que la ecuación es incompleta.
Estas curvas tienen ciertos elementos que la identifican como veremos en el siguiente gráfico:
Raíces
Las raíces ( o ceros) de la función cuadrática son aquellos valores de x para los cuales la expresión vale 0, es decir los valores de x tales que y = 0. Gráficamente corresponden a las abscisas de los puntos donde la parábola corta al eje x. Podemos ver a continuación que existen parábolas que cortan al eje x en:
Prueba con el simulador anterior como varían las raíces de la función cambiando los valores de los términos
Para poder calcular las raíces de cualquier función cuadrática calculamos f (x) = 0, entonces
ax² + bx +c = 0
Pero para resolver ax² + bx +c = 0 observamos que no podemos aplicar las propiedades de las ecuaciones, ésta tiene la particularidad de poseer un término de segundo grado, otro de primer grado y un término constante. Entonces, para resolverla podemos hacer uso de la fórmula:
al resultado de la cuenta b2 - 4ac se lo llama discriminante de la ecuación, esta operación presenta distintas posibilidades:
Si b2 - 4ac > 0 tenemos dos soluciones posibles.
Si b2 - 4ac = 0 el resultado de la raíz será 0, con lo cual la ecuación tiene una sola solución real.
Si b2 - 4ac < 0 la raíz no puede resolverse, con lo cual la ecuación no tendrá solución real.
Entonces, si la ecuación esta completa ya sabemos como calcular las raíces (con la fórmula) y si la ecuación es incompleta solo basta despejar la variable x de la ecuación:
1er caso: ax2 + bx = 0 |
2do caso: ax2 + c = 0 |
Vértice
El vértice de la parábola está ubicado sobre la recta de simetría, de modo que su coordenada x, que notaremos xv vale:
Conocida la coordenada x de un punto, su correspondiente coordenada y se calcula reemplazando el valor de x en la expresión de la función.
En el vértice se calcula el máximo ( o el mínimo) valor de la función de acuerdo a que la parábola tenga sus ramas para abajo o para arriba ()
Si la parábola no tiene raíces el vértice se puede calcular utilizando los coeficientes de la función de la siguiente manera:
Concavidad
Otra característica es si la parábola es cóncava o convexa:
En el siguiente simulador cambia los valores de a, dándole valores positivos y valores negativos.
También suele decirse que:
Si a > 0 la parábola es cóncava o con ramas hacia arriba.
Si a < 0 la parábola es convexa o con ramas hacia abajo.
Función lineal
Introducción: Recordemos que una función es una correspondencia entre los elementos de un conjunto de partida, llamado Dominio, y los elementos de un conjunto de llegada, llamado Codominio, de forma tal que a cada elemento del dominio le corresponde uno, y solo uno, en el codominio.
Definición: Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Definición f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal.
Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b
Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
Definición: Las funciones lineales son polinomios de primer grado. ver grafica ejes
Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales:
a(x) = 2x+7 b(x) = -4x+3 f(x) = 2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma mas sencilla, f(x) = 9x + 2
Tambien recordemos que hemos convenido que cuando no establecemos en forma explicita el dominio y el codominio de una función, supondremos que es el mayor conjunto posible en cada caso.
Por ejemplo, si hablamos de la función f, de dominio real y codominio real, tal que f(x)= 2x-6, anotaremos f: R ——-> R / f(x) = 2x-6 Siendo el dominio todos los números reales, R, y el codominio también, todos los números reales, R.
Esto se lee " f de R en R tal que f de x es igual a 2x-6"
Vamos a graficar esta función, que tal cual lo vimos en la definición, es una función lineal por ser de primer grado. Para graficarla haremos una tabla de valores.
f: R ——> R / f(x) = 2x-6
Le vamos dando valores a "x". ¿Que valores le podemos dar? Cualquiera que este dentro del dominio.
Por ejemplo, si x = 5 , entonces f(x) pasa a ser f(5), que es f(5) = 2.(5)-6 f(5) = 4
Entonces al 5 le corresponde el 4. Nuestro punto es el (5,4).
¿Cómo se coloca en un par de ejes coordenados?
¿Que tal si repasamos esto?
Y ahora que ya sabemos colocar los puntos, podemos hacer la gráfica de una función lineal. Con el botón "paso a paso" iremos construyendo juntos la gráfica de una recta. Cuando termines, con el botón "de nuevo" podrás hacer otra gráfica.
f: R —> R / f(x) = a.x+b
Una función lineal cumple además, que el incremento de los valores de los elementos del dominio es proporcional al incremento de los valores en el codominio, siempre que a no sea cero.
Este número a se llama pendiente o coeficiente angular de la recta.
Volvamos a esto ejemplos de funciones lineales
f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
f: f(x) = 2x+5 si x es 3, entonces f(3) = 2.3+5 = 11
si x es 4, entonces f(4) = 2.4+5 = 13
si x es 5, entonces f(5) = 2.5+5 = 15
Cada vez que la x se incrementa en 1 unidad, el resultado, esto es, f(x), se incrementa en 2 unidades.
Preste atención en que los valores de x y de f(x) NO SON PROPORCIONALES.
Lo que son proporcionales son los incrementos.
g: g(x) = -3x+7 si x= 0, entonces g(0) = -3.(0) +7 = 0+7 = 7
si x= 1, entonces g(1) = -3.(1) +7 = -3+7 = 4
si x= 2, entonces g(2) = -3.(2) +7 = -6+7 = 1
Cada vez que la x se incrementa en 1 unidad, el resultado, esto es, g(x), disminuye en 3 unidades.
h: h(x) = 4 si x= 0 , entonces h(0) = 4
si x= 98 , entonces h(98) = 4
Cada vez que la x se incrementa en 1 unidad, el resultado, esto es, h(x), NO aumenta. Es la función constante. Su gráfica es una recta paralela al eje OX.
¿Qué diferencia fundamental y muy importante hay entre las funciones h y j?
Parecería, a primera vista, que son muy parecidas. Las "fórmulas" de ambas son iguales. h(x)=3 y j(x)=3
Sin embargo, son muy distintas porque mientras la función h tiene como dominio todos los números reales, la función j tiene como dominio los números naturales. Y como entre dos números naturales consecutivos no hay ningún otro número natural, no existe gráfica ni puntos entre ellos.
Esto es, entre el 17 y el 18 no hay ningún número natural. Entre el 17 y el 18 hay infinitos número reales. He ahí la diferencia.
La representación gráfica de h es una linea recta, pero la de j son puntos aislados, aunque son infinitos.
Esto, por supuesto, ocurre no solo si son funciones constantes. Es para cualquier función. El dominio es muy importante.
Cuando no se especifíca el dominio y codominio, se supone que son los mayores posibles. En el caso de las funciones lineales, es de R en R.
Veamos otro ejemplo:
Esta función, llamada q, ¿ será lineal ? Supongamos, además, que es una función de R en R.
Para determinar esto tenemos que ver si las diferencias entre los valores en el dominio y codominio son proporcionales. Esto es, si cambian en la misma razón.
Dominio x | Codominio y |
4 | 1 |
7 | 2 |
13 | 4 |
16 | 9 |
Dominio: de 4 a 7 aumenta en 3 Codominio: de 1 a 2 aumenta en 1
Dominio: de 7 a 13 aumenta en 6 Codominio: de 2 a 4 aumenta en 2. Por ahora, parece que si
Dominio: de 13 a 16 aumenta en 3 Codominio: de 4 a 9 aumenta en 5 Se rompió la relación
Cada 3 unidades de aumento en x, aumentaría en 1 en el codominio, pero el "9" no esta de acuerdo con esto. ¿Que número tendría que estar, en lugar del "9", para que sea una función lineal ?
Primero lo piensas y luego toca el botón "lineal".
RESUMEN: Las funciones lineales son funciones de dominio real y codominio real, cuya expresion analítica es f: R —> R / f(x) = a.x+b con a y b números reales.
La representación gráfica de dichas funciones es una recta, en un sistema de ejes perpendiculares. La inclinación de dicha recta esta dada por la pendiente a y la ordenada en el origen es b.
Ejercicio resuelto: De la funcion 3x+4y=12 deducir la fórmula de la ecuación de la recta y tambien la de una paralela y otra perpendicular.
Luego graficar por pendiente y ordenada en el origen.
Luego graficar por pendiente y ordenada en el origen.
Otro ejercicio resuelto: Dar la ecuación de la recta con los datos: pendiente y un punto.
Suscribirse a:
Entradas (Atom)